BladeBridge: Three Design Options for a Pedestrian Bridge Made from Decommissioned 53 Meter Wind Turbine Blades

Gabriel Ackall, Zoe Zhang, Russell Gentry, Larry Bank July 25, 2023

Presentation Outline

1. Introduction

- 2. Three BladeBridge Concepts
- 3. Design
- 4. Conclusion

Wind Turbine Blade Waste

- Estimated total of 43 million tonnes of wind turbine blade waste by 2050 [2]
- Waste is difficult to recycle and ends up in landfills or incinerated
- Repurposing wind-blades is the most sustainable end of life solution for these blades

Benjamin Rasmussen, Bloomberg Green [1]

Previous BladeBridges

- Withstood 33 tonnes with only 9 mm of deflection at mid-span
- 6 meter span

Previous BladeBridges

• BladeBridge installed in Ireland for pedestrian and cyclist use

Wind Blade Properties

- Composed of multiple layers laminated together
 - Balsa
 - Foam
 - GFRP
 - Gel Coating
- 2-3 meters wide and up to 60 meters or longer

Wind Blade Properties

Beaverbrook Park

- Difficult site access conditions
- Requires long span bridges to clear riparian buffer of river and protect existing trees

Presentation Outline

1. Introduction

2. Three BladeBridge Concepts

- 3. Design
- 4. Conclusion

Option 1: Two Blade Simply Supported Bridge

Option 1: Two Blade Simply Supported Bridge

Option 2: Two Blade Cantilever Bridge

Option 2: Two Blade Cantilever Bridge

Option 3: Single Blade Torsional Concept

Option 3: Single Blade Torsional Concept

Presentation Outline

- 1. Introduction
- 2. Three BladeBridge Concepts

3. Design

4. Conclusion

Design Procedure

- 18.5-meter span, 2 meters wide
- 1.9 kN/m² dead load, 3.8 kN/m² live load
- Allowable Strength Design
- Unidirectional GFRP (hatched) has modulus of elasticity of 36.8 GPa [3]
- Rest of material has a modulus of 10 Gpa [4]

Considered Limit States

- Material failure/strain limit
- Deflection: L/360
- Vibration from walking excitation
- Local buckling at trailing edge
- Local failure at abutments

Analysis Diagrams For Two Blade Simply Supported Design Option

Analysis Diagrams For Two Blade Simply Supported Design Option

Analysis Diagrams For Two Blade Cantilever Design Option

Analysis Diagrams For Two Blade Cantilever Design Option

c) Deflection (mm) along single girder

Analysis Diagrams For One Blade Torsional Design Option

Analysis Diagrams For One Blade Torsional Design Option

Analysis Diagrams For One Blade Torsional Design Option

Universal Connectors

Presentation Outline

- 1. Introduction
- 2. Three BladeBridge Concepts
- 3. Design

4. Conclusion

BladeBridge is Possible!

- Long span repurposed wind turbine blade bridges are exceptionally strong and serviceable for pedestrian use
- Simply supported bridge design option is chosen
- Win-Win-Win scenario for wind turbine companies, communities, and researchers

BladeBridge to be Tested at GT Structures Lab

Further Areas of Work

- Understanding natural frequencies and damping ratios of FRP wind turbine blades
- Finite Element Analysis of wind blade girders
- Practical logistics with building this bridge given the difficult site access limitations

Citations

[1] Martin, C. (2020, February 5). Wind turbine blades can't be recycled, so they're piling up in landfills. Bloomberg.com. <u>https://www.bloomberg.com/news/features/2020-02-</u>05/wind-turbine-blades-can-t-be-recycled-so-they-re-piling-up-in-landfill

[2] Ruane, K., Soutsos, M., Huynh, A., Zhang, Z., Nagle, A., McDonald, K., Gentry, T. R., et al. (2023). Construction and Cost Analysis of BladeBridges Made from Decommissioned FRP Wind Turbine Blades. Sustainability, 15(4), 3366. MDPI AG. <u>http://dx.doi.org/10.3390/su15043366</u>

[3] Alshannaq, A. A., Respert, J. A., Bank, L. C., Scott, D. W., & Gentry, T. R. (2022). As-Received Physical and Mechanical Properties of the Spar Cap of a GE37 Decommissioned GFRP Wind Turbine Blade. Journal of Materials in Civil Engineering, 34(10), 04022266. <u>https://doi.org/10.1061/(ASCE)MT.1943-5533.0004410</u>

[4] Ruane, K., Zhang, Z., Nagle, A., Huynh, A., Alshannaq, A., McDonald, A., Leahy, P., Soutsos, M., McKinley, J., Gentry, T. R., & Bank, L. (2022). Material and Structural Characterization of a Wind Turbine Blade for Use as a Bridge Girder. Transportation Research Record. https://doi.org/10.1177/03611981221083619

Thank you!

Gabriel Ackall gackall@gatech.edu Georgia Institute of Technology Civil Engineering

